18 Eylül 2008 Perşembe

Piller



Piller kimyasal enerjiden elektrik enerjisi üreten düzeneklerdir. Günlük hayatta çok kullandığımız pillerin en büyük avantajı elektrik enerjisini taşınır kılmasıdır.Çeşitli metaller kimyasal reaksiyonlar sırasında elektron verirler, buna yükseltgenme adı verilir.Çeşitli metaller de bunun tersi olarak elektron alırlar buna da indirgenme adı verilir.Bu reaksiyonlar sırasında; her metalin elektron verirken veya alırken, yarı pil potansiyeli adını verdiğimiz, verilen veya alınan elektronların karşılığı olan bir elektrik potansiyeli mevcuttur.


Bir pili oluşturan iki metalin yarı pil potansiyelinin cebirsel toplamı o pilin ürettiği voltaja eşittir.


Yükseltgenmenin olduğu elektrot anottur. Anoda gelen iyon da anyondur, o halde anyon negatif yüklü iyondur.Bunun tersi katot ve katyon olarak adlandırılır.


İlk zamanlarda piller tek defa kullanılabiliyordu ve tekrar kullanılabilen elektrik kaynağı olarak akümülatörler bulunmuştu.Zamanımızda pek çok çeşit pil, birden çok kullanılabilme, yani tekrar şarj edilebilme özelliğine sahiptir.


Piller şu şekilde sınıflanabilir:

1-) Atom pili

2-) Yakıt pili

3-) Güneş pili

4-) Kuru pil

5-) Sıvı piller

6-) Gazlı piller


Atom pili uranyum ve grafit bloklardan oluşan ve nükleer enerjiden elektrik enerjisi elde etmeye yarayan pillerdir.


Yakıt pili dışarıda ki yakıttan örneğin: hidrojen ve oksijen gibi, elektrik enerjisi elde etmeye yarayan düzeneklerdir.


Güneş pilleri veya fotopiller amorf silisyum kristallerinden elde edilen P- N kavşaklı bir yarıiletken yapıdır.Takriben açık güneşli havada desimetrekare de 1 watt enerji verebilir.


Pil İlk kez 1800 yılında Alessandro Volta tarafından yapılmıştır.Bu pil yuvarlak çuha veya karton parçaları ile birbirinden ayrılmış bakır ve çinko disklerinin asitli suya batırılması ile oluşmuştu. Bu tip pillerde zamanla pozitif elektrot üzerinde hidrojen kabarcıkları oluştuğu ve EMK de azalma olduğu ortaya kondu,buna elektrotun kutuplanması denir,bunu azaltmak için çeşitli oksitleyiciler kullanmak gerekir. Bu iş için kullanılan yükseltgen maddeler arasında;Kromik asit,Potasyum bikromat, Nitrik asit gibi sıvılar ve kurşun dioksit,manganez dioksit gibi katılar vardır.


1842 de Poggendorf daha sonra Grenet,Ducretet ve Trouve potasyum bikromatlı pili yaptılar ve bu piller 2 volt ve yüksek akım vermekteydi.Bu kutuplanmayan bir sıvı pildi.


Lechlanche pili bir kuru pildir. Bu pilde elektrot olarak Çinko ve Karbon kullanılır.Lechlanche pilini Fery geliştirdi ve kendi adı ile anılan pili yaptı.Eskiden cep fenerlerinde kullanılan akıp cihazları berbat eden piller bu pillerdir…


Lechlanche pilinde amonyum klorür jel haline getirilmiştir çinkoyu sarar.Karbon etrafında bir gözenekli kılıf içinde karbon ve manganez dioksit bulunur.Tepe ziftlenir. Burada reaksiyon sonucu Amonyak ve hidrojen iyonu oluşur.


Yukarıda görülen Lechlanche pilinde turuncu renk karbon etrafınna sarılı olan manganez dioksit.Yeşil renk çinko katot,aradaki gri renk ise manganez dioksit ile çinko arasında bulunan jel Amonyum klorürdür


Kuru pillerde kutuplaşmayı önlemek için genel olarak kullanılan Manganez dioksittir.Bunsen pilinde bu maksatla nitrik asit kullanılır. Alman Fiziko-kimyacısı olan Robert Wilhelm Bunsen (1821 – 1899 ) 1843 de bu pili yapmıştır.


Sıvı kutuplanmaz pillerin ilk örneği Daniell pilidir. Daniel pilinde Bakır ve Çinko elektrot olarak kullanılır.1.08 volt elektrik gerilimi üretirler her elektrot kendi tuzlarının çözeltisine batırılmıştır ve arada gözenekli bölme ile birbirlerinden ayrılırlar.burada Çinko çözünür,Bakır ise çöker.Daniell pili bir sıvı pildir .Sıvı pillerde elektrolit sıvıdır.Daniel pili de böyledir, keza Akümülatörlerdede elektrolit sıvı Sülfürik asittir.


Derişim pilleri de kutuplanmaz pillerdendir, burada aynı metalden yapılmış iki elektrot,bu metalin iki farklı tuzu içine konur. Latimer Clark ve Weston pili böyledir.Bu piller ölçek pil olarak adlandırılır ve pillerin iç direnci ve EMK ölçümünde referans alınırlar.


Basınç altındaki gaz içinde olan piller gazlı pil olarak adlandırılır. Sir William Robert Grove İngiliz fizikçisidir. Aslında Bir hukukçudur ve amatör olarak fizikle uğraşmaktadır.1839 da elektrotları odun kömüründen olan gazlı pili yapmıştır.Gaugain ve Zeuger pilleri de gazlı piller dendir.


Günlük hayatta kullandığımız kuru piller, çeşitli boylarda ve güçlerde imal edilirler.Pillerin üretiği voltaj üzerlerinde yazılıdır. Pillerin eskimesi halinde bu voltaj değerinde düşme meydana gelir,buna bayat pil deriz.Normalde kullanılmış bir pilde bile çekilen akım, pilin verebileceği akımdan fazla değilse voltaj düşmesi meydana gelmez, bu şu demektir.biz bir pilin taze mi eski mi olduğunu yalnız voltajı ölçerek bulamayabiliriz.


Gündelik kullanımda ki piller iki tiptir:

1-) Tekrar şarj edilebilen piller

2-) Tekrar şarj edilemeyen piller

Şarj edilebilen piller :
1-) Nikel Kadmiyum piller

2-) Nikel Metal Hidrit piller

3-) Lityum İon piller

Şarj edilemeyen piller :
1-) Muhtelif alkalen piller

2-) Gümüş oksit piller

3-) Çinko - Karbon pilleri

4-) Civalı piller


Nikel Kadmiyum Piller:

Adından da anlaşilacağı gibi nikel ve kadmiyum dan yapılmış pillerdir. Bu piller hafızalı piller olarak ta adlandırılır. Şarjlı halde 1.44 volt maksimum voltaja sahiptir.


Boş halde 1.2 voltta tutulmalıdır.Bu pillerin verimli kullanılması için 1.1 volt pil geriliminde mutlaka tekrar şarj edilmeleri gerekir. Bunun için özel düzenekler mevcuttur. Bu pillerin güç eğrisi birdenazalır ve kullanım süresi sonunda güç birden düşer.


Tüm pillerin üzerinde mevcut olan pilin akım gücünü gösteren bir rakam mevcuttur bu mAmper / saat olarak ifade edilir. Bir pilin üzerinde 800 mA /h yazıyorsa bu şu demektir: Bu pil 800 mA akımı ancak bir saat akıtabilir. Eğer bu pilden devamlı olarak 100 mA akım çekiyorsanız o zaman bu pil size 8 saat hizmet edecektir.


Nikel kadmiyum piller akım şarjına tabidirler şarj voltajları 1000 volta kadar çıkabilir. Ni-Cad piller üzerlerinde yazılı olan mA/saat değeri ne ise o değerin onda biri kadar bir akım ile 14 saat şarj edilirler.


Örneğin üzerinde 750 mA/saat yazan bir pili 75 mA ile 14 saatte şarj edebiliriz.Ama çoğu zaman hızlı şarj devreleri ile çabuk şarj gerekli olur.Bu durum pilin ömrünü kısaltır ve genellikle pilleri 1 saatte sarj edecek kadar akım basılır. Bu durumda 400 - 1000 mA gibi yüksek bir şarj akımı uygulanır.Bir Nikel Kadmiyum pilin şarj olduğunu, sıcaklığının artmasından da anlayabiliriz; çünkü bu, durumda kimyasal reaksiyon bitmiş verilen enerji ısı enerjisine dönüşmekte demektir.


Nikel - Kadmiyum pillerin şarjında değişik teknikler kullanılır, bunlar pilin ömrünü uzatmak için yapılan işlemlerdir. Pil yarı boşalmış halde iken şarj edilmez, aksi halde pil hafızasında tuttuğu bu noktadan ileriye doğru şarj olur bu da kapasitesini düşürür. Bu tip piller önce boşaltılır, sonra şarj edilir.


Nikel Metal Hidrit Piller:

Nikel Kadmiyum pillerden sonra piyasaya çıkan bir pildir. Ni - Kad. Pillere göre daha yüksek kapasiteye sahiptir. Şarj edilmeleri hemen hemen Ni-Kad. Piller gibidir. Her iki pilin de bir iç dirençi vardır, bu direnç Ni - Kad. Pillerde daha yüksektir, bu nedenle kullanılmadığında bu piller kendi içinden bir akım akıtır ve boşalırlar, bu olay NiMH pillerde daha çabuk olur ve daha kısa sürede boşalırlar.


Li- ion Piller :
Diğer şarj edilebilen pillere göre daha yüksek kapasiteleri olan pillerdir. Hafif piller olup, kendi kendine boşalmaları yavaştır. Şarj edilmeleri biraz daha güçtür, fakat bir yandan kullanılır bir yandan da şarj edilebilirler. Hem voltaj hem de akım regülasyonu ile şarj edilirler.


Akümülatörler :
İlk kez Sir william Grove’un tasarladığı platin elektrotlu pil ile ortaya çıkan doldurulabilir pil yapımını Gaston Plante başardı.


Kurşun Kurşun oksit li

Nikel Kadmiyum lu

Nikel Demir li

Gümüş Çinkolu


Olmak üzere değişik tip akümülatörler mevcuttur. En çok kullanılan Kurşunlu akümülatörlerde, elektrotlar kurşundur. Seyreltik sülfürikasit de elektrolit olarak kullanılır.


Akümülatörler voltaj kaynağı ile şarj edilirler normal şarj için kapasitesinin 1 /10 u kadar akım verilir ve 24 saat süresinceşarj olur.


Otomobillerde kullanılan akümülatörler 45 ve 60 Ah kapasitesindedirler.Yani bu akümülatör kullanılma süresi ile verdiği akım çarpımı 60'a eşittir.Yani 10 amper çekiliyorsa 6 saat akım verebilir.


Dolu bir Akümülatör maksimum voltajı 14.5 volttur. Akümülatörler üzerinde ayrıca maksimum akım değeri de yazar bu çok yüksek bir akım değeridir.Bir Akümülatör 250 Ampere kadar bir akımı akıtabilir.

10 Eylül 2008 Çarşamba

NÜKLEER GÜÇ SANTRALLARININ GENEL TANITIMI

Nük. Müh. Fatoş Arzu ALPAN

Nükleer Güç Santralları ile Termik Santraller birbirleri ile benzer özellikler taşırlar. Her iki santral tipinde de elde edilen buharın ısıl enerjisi türbinde mekanik enerjiye ve mekanik enerji de dejeneratörlerde elektrik enerjisine dönüştürülerek elektrik üretilir. Bu santraller arasındaki temel fark buharın elde ediliş yöntemidir. Bütün nükleer reaktör tiplerinde bölünmeden açığa çıkan enerji buhar üretiminde kullanır ve bu buhar üretimi doğrudan reaktörün korunda ya da buhar üreteçlerinde yapılır. Bu nedenle nükleer reaktörlerdeki bölünme reaksiyonu termik santrallarda fosil yakıt yakmakla aynı işleve sahiptir. İlk olarak nükleer güç santrallerini tanıtmadan önce bölünme (fisyon) reaksiyonu mekanizmasını anlatmakta yarar vardır. Nükleer reaksiyonda açığa çıkan enerji, temelde U235 izotopunun ya da herhangi bir bölünmeye yatkın (fisil) izotopun (Pu239, U233) nötronla etkileşmesinden ötürü parçalanması olayı sonucunda açığa çıkan fazlalık bağlanma enerjisidir. Nötronla etkileşen U235 çekirdeği kararsız hale geçerek, kendisinden daha hafif iki çekirdeğe ayrılır ve bu esnada da ortalama olarak iki nötron açığa çıkarır. Bu reaksiyon sonucu açığa çıkan bölünme enerjisi yaklaşık 200 MV'dir. Bu enerji buhar üretimi için soğutucuya aktarılır ve açığa çıkan nötronlardan biri bölünmeye yatkın başka bir izotopu parçalayarak zincirleme reaksiyonuna sebep olur. Diğer nötron ise reaktör içindeki diğer malzemeler tarafından yutulur ya da sistemden kaçar. Nükleer reaktörler bu zincirleme bölünme reaksiyonunun kontrollü olarak yapıldığı sistemlerdir. Bölünme reaksiyonunun önemini anlamak için 1 kg U235 izotopunun yanması sonucu açığa çıkan enerjinin yaklaşık 1.3 milyon kg kömürünkine eşdeğer olduğunu belirtmek yeterli olacaktır. Bölünme reaksiyonu sonucu açığa çıkan nötronların etkili bir şekilde kullanılabilmesi için bölünmeye yatkın izotoplarla etkileşme olasılıklarını arttırmak gerekir. Bu nedenle bölünme reaksiyonlarından açığa çıkan hızlı nötronlar moderatör adı verilen yavaşlatıcı malzemeler yardımı ile yavaşlatılarak bölünmeye yatkın malzemelerle etkileşim olasılıkları arttırılır. Diğer bir malzeme de yansıtıcı (reflector) dır. Bu malzeme korun etrafına yerleştirilerek nötronların sistemden dışarı kaçma olasılıklarını azaltmak için kullanılır. Moderatör malzemesi aynı zamanda yansıtıcılık işlevini de görebilir.

İlk kontrollü bölünme reaksiyonu 1942 yılında Amerika Birleşik Devletlerinde inşa edilen CPI Reaktöründe gerçekleştirilmiştir. Bu reaktörde yakıt malzemesi olarak doğal uranyum ve moderator olarak grafit kullanılmıştır. İlk nükleer reaktörde olduğu gibi nükleer reaktör tasarımcılarının reaktör yakıtı için seçimleri doğal uranyum (%0.71 U235, %99.27 U238) ya da %3, %4 oranında zenginleştirilmiş uranyumdur. Eğer yakıt doğal uranyum seçilirse moderator olarak grafit ya da ağır su kullanılmalıdır.

Günümüzde, elektrik üretimi için kullanılan santralların büyük bir bölümü Basınçlı Su Reaktörü (PWR), Kaynar Su Reaktörü (BWR), ve Basınçlı Ağır Su Reaktörüdür (PHWR). Bunlardan ilk ikisi, hafif su soğutmalı termal reaktör sınıfına girer, moderator ve reflektör malzemesi olarak da hafif su kullanılır. Üçüncü reaktör tipi ise dünyada ilk olarak Kanada'da elektrik üretimi için kurulan ve soğutucu olarak ağır su kullanan Basınçlı Ağır Su Reaktörüdür.

8 Eylül 2008 Pazartesi

ELEKTRİK ENERJİSİNİN ÜRETİLMESİ VE TERMİK SANTRALLAR

Termik santrallar, kömür, akaryakıt veya gaz gibi fosil yakıtların yakılması yoluyla elektrik üretir. Su santrallarda, ocağın kazan bölümünde dolanan su, çok sıcak buhar haline dönüşür ve bu buhar, elektrik akımı üreten alternatörlere bağlı türbinleri çalıştırır. İlk büyük petrol krizi sanayileşmiş Batılı ülkelerde bu tip termik santralların yapımını yavaşlattı. Ancak gene de bu tip santrallar, birçok ülkede enerji açığını kapatmakta görev üstlenmeye devam etmektedir.

Termik santralların ürettiği ısının bir bölümü çevreye atılır. Soğutma suyunun sağlandığı kıyı ve ırmak suları birkaç derece ısınır. Kömürün yanmasıyla oluşan küllerin bir bölümü bacaların elektrostatik filtrelerinden dışarı sızar. Ve nihayet, bütün fosil yakıtlar azot ve kükürt içerir ve bu maddeler yanma sonrasında oksitler halinde atmosfere karışır. Çevre uzmanlarına göre gaz atıklar, ormanlar için son derece zararlı olan asit yağmurlarının en önemli nedenidir.

Termik Santralın Çalışma Yöntemi Elektrik enerjisine dönüştürülecek olan termik enerjiyi üretmek için, yakıt bir buhar kazanında yakılır. Buhar kazanı, bir ocak ile bir boru demetinden oluşur; boruların içinde dolanan su, burada ısıtılır ve buhar haline geldikten sonra türbinlere gönderilir. Eğer yakıt olarak kömür kullanılıyorsa, bu kömür önce öğütülüp toz haline getirilir; sonra sıcak havayla karıştırılır ve brülörle buhar kazanının yanma odasına püskürtülür. Eğer sıvı yakıt kullanılıyorsa, bu sıvı yakıt önce akışkanlığının artması için ısıtılır, sonra kullanılır.

600MW’lik bir santralda buhar 565 derecelik bir sıcaklığa ve 174 bar düzeyinde bir basınca çıkarılır. Yüksek basınçlı türbinlere yollanan buhar kısmen genleşerek türbin çarklarını döndürür. Bu ilk aşamadan geçen buhar, enerjisinin bir bölümünü korur. Aynı buhar, ayrı bir devre aracılığıyla yeniden kazana gönderilir ve tekrar ısıtılır; sonra 34 bar düzeyinde bir basınçla, orta basınçta çalışan türbine basılır. Düşük basınç bölümündeyse buhar tam olarak genleşir. Bu çevrimin sonunda basıncı 300 milibara düşen buhar kondansöre gönderilir.

Kondansör, buharın yeniden suya dönüştürüldüğü soğuk bir kaynaktır. Buhar burada, içinde soğutma suyunun dolandığı binlerce küçük çaplı boruya temas ederek tekrar suya dönüşür. Sonra pompalarla toplanır ve yeniden ısıtma çevrimine sokulur; bu amaç için türbinin farklı noktalarında ısıtılan buhardan yararlanılır. Böylece yeni çevrim başlamış olur: su tekrar buhar kazanına girer, burada ısıtılarak buharlaştırılır ve türbinlere doğru yollanır. Türbinlerin mekanik enerjiyse alternatör vasıtasıyla elektrik enerjisine dönüştürülür. Ve son olarak da bir transformatörde gerilimi yükseltilen elektik, genel iletim hatlarına verilir.

7 Eylül 2008 Pazar

ELEKTRİK ENERJİSİNİN İLETİMİ VE DAĞITILMASI

ELEKTRİK ENERJİSİNİN İLETİMİ (TAŞINMASI) VE DAĞITILMASI

Genellikle birbirinden uzak olan elektrik üretim santrallarıyla tüketim merkezleri arasındaki bağlantı, iletişim şebekesi ve enterkonnekte sistemlerle sağlanır. Elektrik depolanamadığından, üretildiğinde hemen kullanıcıya ulaştırılması gerekir. Bu da üretim ve tüketimin her an dengede tutulması demektir. Öte yandan tüketim miktarı bölgelere, mevsimlere ve hatta günün saatlerine göre büyük değişiklikler gösterebilir. Enterkonnekte sistemler, üretimi tüketim düzeyindeki değişimlere uyarlamayı sağlar. Elektriğin iletimiyse, gerilimin gücüne bağlı olarak taşıma iletim sığası değişen elektrik hatları aracılığıyla gerçekleştirilir. Gerilim arttığında iletim işleminde ciddi tasarruflar sağlanır: enerji kaybı gerilim düzeyiyle ters orantılı olduğu için enerjiden, hat miktarı azaldığı için yerden, şebekedeki bakım masrafları azaldığı için de harcamalardan tasarruf edilir. Mesela, 1000 MW’lık bir nükleer santralın ürettiği elektriği boşaltmak için, 380000V’luk bir hat kullanılır; oysa aynı işi görmek için 154000V’luk altı hat veya 66000V’luk 30 hat gerekir. Enterkonnekte sistemler çok dağınık bölgelerin üretim imkanlarını birleştirerek, aynı malzeme güvenliği bakımından gerekli olan güç miktarının azalmasını sağlar. Arızalar meydana geldiğinde, yerinde değiştirilmesi gereken parçalar o an için elde bulunmayabilir. Bu durumda enterkonnekte sistem yardıma koşar; elektrik dağıtım istasyonlarında gerilimin akış yönü ayarlanarak anında ve en az harcamayla üretim ile tüketim arasındaki denge sağlanır. Şebekenin yönetimi için gerekli emirler ve bilgiler özel iletişim hatları, özel telsizler kullanılarak sağlanır.

Şebeke ve gerilimler
Gerilim ne kadar yüksek olursa, bir hattın iletebileceği elektrik miktarı da o kadar yüksek olur. Üretim santrallarından çıkan çok büyük miktarlardaki akımı iletebilen hatlar Türkiye’ de 380000V veya 154000V düzeyindedir. Uzak mesafeler arasına kurulan büyük iletişim şebekeleri ve enterkonnekte sistemler bu tip hatlardan oluşur. Bu şebekeler, bütün üretim santrallarını birbirine bağlar. Elektrik, gerilimi düşürüldükten sonra bölgesel şebekelere iletilir ve bu şebekeler yardımıyla ayrılarak dağıtım merkezlerine gönderilir. İletim şebekesi bölgesel, ulusal veya uluslar arası ölçekte de olsa, yönetim ve organizasyon nedenleriyle iletim işlemi Türkiye’ de 34500V veya bunun üzerindeki bir gerilim düzeyinde gerçekleştirilir. En çok kullanılan 380000V, 154000V, 66000V veya 24500V’tur. 34500V’un altındaki gerilimlere ortalama gerilimler olan 20000V ve 15000V veya alçak gerilim olan 380 veya 220V’luk “dağıtım gerilimleri” denir. Petrokimya, metalürji (özellikle alüminyum), demir-çelik fabrikaları ve elektrikli ulaşım hatları (tren, tramvay) çok büyük tüketicidir. Orta gerilim şebekeleri orta ve küçük sanayi işletmeleri ile büyük mağazalar veya yöresel yönetimler, hastaneler, okullar gibi merkezleri besler. Son olarak, milyonlarca yerel kullanıcı, alçak gerilimli elektrik akımıyla beslenir. Elektrik Dağıtım Merkezleri ve Dağıtım Bağlantıları Elektrik üretim merkezleriyle tüketicileri arasındaki bağlantı, elektrik iletim şebekesiyle anında sağlanır. Elektriğin dağıtımı, üretim ve iletim merkezlerindeki karmaşık bir programlama sistemiyle gerçekleştirilir. Dağıtım Türkiye Elektrik Kurumu (TEK) tarafından hazırlanarak uygulanmakta olan bir plana göre Türkiye çapında yapılır. Bu amaçla haberleşme ve telekomünikasyon araçlarından, otomasyondan ve önceden hazırlanan istatistik verilerine dayalı öngörülerden yararlanılır. Bu öngörülerde, ele alınan günün birkaç yıl öncesine kadar şebeke ve tüketim durumu dikkate alınır. Eskiden yılda bir kere yapılan tahminler, zamanla haftalık, günlük hale gelmiş ve tüketimin daha da yakından izlenmesi imkanı sağlanmıştır. Dağıtım ve iletimde meteorolojik koşullar da çok önemlidir; kapalı bir hava veya güneşli bir hava büyük sıcaklık farklılıklarına yol açar ve bu da milyonlarca konutun ısıtma ve aydınlatılmasında rol oynar. Elektrik akımının iletimi ve dağıtımı şebekeye bağlı dağıtım merkezlerince (transformatör istasyonları) sırayla yapılır.

Şebeke dağıtım merkezlerinin iki ayrı işlevi vardır: hem hatların birbirine bağlanmasını sağlar (enterkoneksiyon), hem de dönüştürme işlevi üstlenir (transformatör). Transformatör istasyonları transformatörler (dönüştürücü), disjonktörler ve ayırıcılarla donanmıştır. Transformatörler, duruma göre elektrik akımının gerilimini yükseltir veya alçaltır; dolayısıyla, iletim ve dağıtıma en uygun gerilimi seçerek elektriğin taşınmasında büyük önem taşır. Disjonktörler gerilim hattında herhangi bir aksaklık olduğunda akımı otomatik olarak kesmeye yarar. Hattın şebekeden ayrılması gerektiğinde devreye sokulabilir. Ayırıcılar da aynı rolü üstlenir, ama hatta akım olmadığı zaman çalışır ve hattı şebekeden tamamen ayırmakta kullanılır. Bir dağıtım merkezinin birçok farklı öğesi çoğunlukla açıktadır; bazı kentlerde bir dizi öğe yeraltında veya bina içlerinde olabilir. Bunlar basınçlı gaz zarfı içinde tutulur. Atmosferle pek temas etmediğinden, bundan kaynaklanan kirlenmelere uğramaz. Merkezler biraz uzaktaki bir kumanda istasyonundan yönetilir.

Elektriğin Ülke Çapında Dağıtımı
Türkiye’de elektrik dağıtımından genelde Türkiye Elektrik Kurumu (TEK) sorumludur; bazı bölgelerde bu işi özel şirketler üstlenmiştir. Dağıtım kuruluşu tüketim ihtiyacına göre şebekeler kurmak, bunları yönetmek ve yenilemek, tüketicileri şebekeye bağlayan bağlantıları yapmak, dağıtılan elektriğin sürekliliğini sağlamak ve miktarını sabit kılmakla yükümlüdür. İletim sistemi aracılığıyla yüksek gerilimde taşınan elektrik, alçak gerilime düşürülerek bir dağıtım merkezine, yani transformatör istasyonuna ulaştırılır. Kırsal bölgelerde bu şebekeler açıktadır; yerleşim bölgelerindeyse çoğunlukla yeraltına döşenmiştir.

Orta gerilim/alçak gerilim merkezlerinin bağlayıcı elemanı, farklı gerilimdeki iki şebekeyi birbirine bağlayan ve kısaca trafo denen transformatördür. Alçak gerilimli dağıtım sistemi tüketicilere üç fazlı ve bir topraklı (nötr) elektrik sağlar; elektrik iki gerilim düzeyinden oluşur. Bunlardan giderek yaygınlaşanı fazlar arası 380V ve faz-toprak arası 220V gerilimidir. Fazlar arası 200V ve faz-nötr arası 127V olanı giderek azalmaktadır. En çok kullanılan sistemler üç fazlı 380V ve tek fazlı 220V’tur. Bu seçeneğe göre, bir alet 4 tele veya 2 tele bağlanır. Elektrik akımının frekansı bütün Avrupa’da ve Türkiye’de 50Hz, Amerika kıtasındaysa 60Hz’dir. Bir motor veya bir bilgisayar, aygıtın içinde kullanılan frekansa eşit frekanslı bir şebekeye bağlanmadıkça düzgün çalışmaz.

ELEKTRİK ENERJİSİ

ELEKTRİK ENERJİSİNİN ÖZELLİKLERİ

- Elektrik enerjisinin diğer enerji türlerine dönüştürülmesi kolaydır.
- Diğer enerji türlerine göre çok uzaklara taşınması ve kullanılması son derece rahattır.
- Verimi yüksektir. Bir enerji, istenen başka bir enerji türüne dönüştürülürken, ekseriya istenmeyen başka enerji türleri de ortaya çıkar. Bunların arasında özellikle ısı enerjisinin büyük olması dikkati çeker. İstenmeyen bu ısı enerjisi, yararlanılamadığı için yitirilir ve verimi düşürür. İşte elektrik enerjisinin ısıdan başka bir enerjiye dönüştürülmesinde oluşan ısı enerjisi az olduğu için verimi yüksektir.
- Elektrik enerjisi sayısız bir çok parçaya ayrılarak kullanılabilir. Örneğin: Bir elektrik santralında kazanılan elektrik enerjisi, enerji taşıma hatlarıyla büyük kentlere götürülmekte ve orada sayısız konut ve iş yerlerine dağıtılarak kullanılmaktadır.
- Elektrik enerjisi bulunduğu yerin ekonomik, sosyal ve kültürel düzeylerini hızla yükseltir ve kendisine karşı duyulan gereksinmenin artmasına gene kendisi neden olur.
- Elektrik enerjisi toplumların ekonomik, sosyal ve kültürel yönlerden kalkınmasını sağlayan ve çağdaş uygarlığın en önemli araçlarından biri durumundadır.
- Son 50 yıl içinde baş döndürücü bir hızla ilerleyen teknolojideki gelişimler ve hatta bir ev kadınının eli altına bir makinanın verilmesi (örneğin çamaşır makinesi) elektrik enerjisi sayesinde olanaklı olmuştur. Elektrik enerjisinin belirtilen bu ve bunlara benzer avantajları ve iyi yönleri yanısıra sakıncalı yönleri de vardır. Bunların başında elektrik enerjisinin depo edilemeyen bir enerji türü olması gelir. Nitekim elektrik enerjisi üretildiği anda kullanılmak zorunluluğundadır. Bundan dolayı üretim ile tüketim arasında devamlı bir dengenin bulunması gerekir. Ayrıca üretim sisteminde bir arıza ortaya çıktığında, bu sisteme bağlı sayısız abonede hizmetlerin durmasına ya da aksamasına neden olur. Bu nedenle, elektrik enerjisinin üretiminde sürekli bir devamlılığın sağlanması ve elde büyük ölçüde yedek sistemlerin bulundurulması zorunludur. Elektrik enerjisinin bir başka sakıncası da üretimine paralel olarak taşıma ve dağıtımı için özel düzenlere kesinlikle gereksinme duymasıdır. Oysaki, örneğin: bir dokuma fabrikası ürünlerini tüketiciye götürmek için özel yollara ve taşıtlara gereksinme duymaz. Bu görevi herkesin yararlandığı bir yoldan ve bir kamyon ile yapabilir. Buna karşın elektrik enerjisinin taşıma ve dağıtılması için projeye ayrıca yatırımların (örneğin: direkler, teller, izolatörler...) katılması zorunlu olmaktadır.